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Abstract-In this paper we study the elasticity problems of a planar crack, lying in an infinite three­
dimensional solid, the front of which differs only slightly from a circle. The crack system is subjected
to loadings that induce shear mode stress intensity factors at the crack front. Quantities such as
relative crack surface displacement, in-plane shear mode intensity factor K 2 and anti-plane shear
mode intensity factor K 3 are derived in detail. The method used is based on a perturbation technique
developed by Rice (J. Appl. Mech. 52, 571-579 (1985)) of calculating the first-order variation of
the elastic field of a crack when its front is perturbed from some regular reference geometry. The
configurational stability problems of harmonic wave form perturbations of the front of a circular
crack under axisymmetric shear loading are studied using the derived formulae. The shape that a
planar crack under remote uniform shear loading would take so that the energy release rate
distributes uniformly along the crack front is discussed by calculating proper perturbations on a
circular crack that meets the above requirement.

INTRODUCTION

For a circular planar crack in an infinite three-dimensional solid, solutions for the stress
intensity factors induced along the crack front by various load systems exist in the literature
(Tada et al., 1973; Kassir and Sih, 1975; Bueckner, 1977, 1987). Specifically, the solutions
for the intensity factor distribution along the circular crack front induced by point force
pairs at an arbitrary location on the crack faces, which corresponds to the three-dimensional
crack face weight functions of Bueckner (1972) and Rice (1972), generalizing Bueckner's
(1970) two-dimensional concepts, are of interest. These solutions were completely derived
by Bueckner (1987) for arbitrary point force pairs acting on the crack faces that induce
general mixed mode stressing along the crack front, although the solution for a "wedging"
force pair that induces mode I tension along the crack front was presented earlier by several
authors (Tada et al., 1973; Cherepanov, 1979; Bueckner, 1977). Hence by integration of
the crack face weight functions we are able to calculate the intensity factors under any load
systems for a perfectly circular crack. These solutions, in the limit when the radius of the
circular crack approaches infinity, should reduce to the corresponding formulae for a half­
plane crack. Solutions for a half-plane crack have been derived by many authors and can
be found in Tada et al. (1973).

Rice (l985a) developed a method of using the crack face weight function solutions to
solve for the elastic field of a crack with a front close to some reference geometry, to first­
order accuracy in the deviation of the actual crack from that reference shape. Using that
method one can carry out the calculations of the variation of various quantities such as
relative crack surface displacements and stress intensity factor distributions when the crack
front is perturbed from the reference front to the actual front, if the crack face weight
functions for a crack of the reference shape are known in advance.

Rice (I 985a) also studied a half-plane tensile crack with a near straight front. In that
paper he derived in detail the formulae for the variation in crack opening displacement and
stress intensity factors to first-order accuracy in the deviation of the actual crack front from
a reference straight line. The shear mode intensity factors for a half-plane crack with a
slightly curved crack front were derived by Gao and Rice (1986) using the perturbation
method. Gao and Rice (1987) further studied the elasticity problems of somewhat circular
tensile cracks. In that paper a full solution, accurate to first order in the deviation of the
actual crack front from a circle, is derived for the stress intensity factor distributions and
the crack opening displacement. One could verify that those perturbation formulae, in
the limit when the radius of the reference crack approaches infinity, also reduce to the
corresponding results given by Rice (l985a) for a half-plane crack. Comparison between
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the exact solutions for an elliptical crack and the numerical results computed from the
perturbation formulae when viewing the elliptical crack as perturbed from a circular crack
suggested that the perturbation analysis, while theoretically exact only to first order, can
be used to produce acceptable results for some planar cracks the shapes of which deviate
appreciably from a reference geometry.

Using the mode 2 and mode 3 crack face weight functions derived by Bueckner
(1987), we extend in this paper the perturbation analysis to the shear mode circular cracks.
Quantities such as in-plane (mode 2) and anti-plane (mode 3) shear stress intensity factors,
K 2 and K 3, along a slightly non-circular crack front are solved to similar first-order accuracy.

RELATIVE CRACK SURFACE DISPLACEMENT

Consider a crack lying in an infinite three-dimensional elastic solid with a bounding
curve c. The elastic solid is assumed to be homogeneous, isotropic, symmetric about the
crack plane and subjected to a general loading system consisting of some distribution of
fixed forces that induce mixed mode stress intensity factors along the crack front. A
Cartesian coordinate system x, y, z is attached so that the crack plane lies on y = O. In this
circumstance Rice (1985a) showed that the variation in the relative displacement ~Uj(x, z)
(j = x,y,z) between upper and lower crack faces at location x,O±,z when the crack front
is altered by ba(s), along the normal direction at an arc length location s along the crack
front, in the presence of the fixed load system is

(1)

to first order in ba(s). Here K2(s) (IX = 1,2,3) is the mode IX intensity factor distribution
induced along the reference crack front by the fixed load system and the crack face weight
function k.j(s; x, z) is defined as the mode IX intensity factor that would be induced at
position s along the reference crack front by a unit force pair in the ±j-direction acting at
location x,O+,z and x,O-,z. The constant coefficients Al =A 2 = 1, A 3 = 1/(I-v) are
introduced for conciseness in writing formulae. The intensity factor K. is defined so that
K.IJ(2ne) is the asymptotic form of the relevant singular stress for mode IX at a small
distance e ahead of the crack tip on the prolongation of the crack plane. We also define in
general that shear mode stress intensity factors have the same signs as those of relative
crack surface displacements very near the crack front. In this situation, the following
asymptotic formulae are valid:

~ ....., 8(I-v
2

) J(l!-)K' ~ ....., 8(1 +v) J(!!'-)K
Un E 2n 2 ,U/ E 2n 3

(2)

where nand t are the normal and tangential directions along the actual crack front with n
lying in the crack plane and p is the distance as measured from the crack front in the
negative normal direction. Equation (2) is understood to be a general asymptotic relation
very near the crack front and will be used in a later section to extract the stress intensity
factors from the near tip behavior of the relative crack surface displacement.

To study the shear mode solutions for a nearly circular crack, we shall conveniently
choose a circle of radius a to be the reference front of the planar crack and adopt the polar
coordinates in the x, z plane with the origin of the polar coordinates located at the center
of the reference circular crack. Note that in this coordinate system s -+ ae' in eqn (I).
Therefore, quantities such as K2(s), k.j(s; x, z) and ~Uj(x, z) (j = x,y, z) are then replaced
by K2(e'), k.;(e'; r, e) and ~uj(r,e) (j = r, e,y), respectively. Let us further introduce the
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following notation after previous work (Gao and Rice, 1987) when referring to a perfectly
circular crack with radius a

where the dependence on the radius of the circular crack is explicitly emphasized. Equation
(1) therefore becomes

(4)

Equation (4) represents the change in relative displacement Auj(r,O) when the crack is
perturbed from the reference circular front of radius a to the actual crack front by an
amount equal to Cia(O') at location 0' along the crack front.

If we allow for a uniform perturbation of the circular crack, i.e. oa(O') = Cia and divide
both sides of eqn (4) by Cia, then by letting Cia ..... 0 we obtain

(5)

Integrate eqn (5) with respect to crack size variable aI, and note AuJ[r,O; a'] = 0 for r ~ a'
since displacements should be continuous at the crack edge. Hence

(1 V
2)lai2

" { 3 }AuJ[r, 0; a] = 2 ~ L AaK~[O'; a']kaiO'; r, 0; a') al dO' da' .
I 0 a= I

By the law of superposition we also have

(6)

(7)

where p;(p, ¢) represent the loads in the j-direction on the crack faces. Equation (7) remains
valid for the general loading system ifPi(P, ¢) are equal to the stresses that would be induced
at the crack site in the absence of a crack. Substituting eqn (7) into eqn (6) and switching
the order of integration over a', 0' with P, ¢ lead to

(8)

where

Dji(r,O;p,¢) = fa j2,,(t Aaka;(O';p,¢;a')kaj(O';r,o;a'»)a' da'dO'. (9)
]maX(T.p) Jo a= I

The function Dji(r, 0; p, ¢) is identified as the general crack face Green's function for a
circular crack. By definition it is the relative displacement induced at location r, O±, 0 on
the crack faces in the j-direction by a point force pair in the ± i-directions acting at location
p, ¢ on the crack faces. The mode one tensile case crack face Green's function Dyy was
derived by Gao and Rice (1987) to a closed expression (eqns (A-9) and (A-ll) of their
paper). We can also immediately verify that DYI = Dy6 = O. The integrals involved in the
shear mode crack face Green's functions seem formidable to integrate analytically.

Equation (6), or eqn (8) combined with eqn (9) gives the formulae for the relative
crack surface displacement for a perfectly circular crack when the loading system Pi(r, 0)
(i = r,y, 0) and the crack face weight functions are known.

Now let us consider a slightly non-circular crack the tip ofwhich is located at r = a(O),
where the function a(0) differs modestly from a constant. For the purpose of retaining the
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correct asymptotic behavior near the crack front at an angle 8, we shall take the reference
crack front to be a circle of radius a(8) so that we are able to let r approach simultaneously
the reference front and the actual perturbed front along the ray at any particular chosen
angle 8. As described by Rice (1985a) and Gao and Rice (1986,1987), such a relocation of
the reference crack front when 8 changes is crucial for the calculation of the stress intensity
factors along the perturbed crack front. In other words, the reference front has to be
relocated as above to make eqn (1) valid even in the vicinity of the actual crack front. For
conciseness in presentation of formulae, we let a stand for a(O) from now on and note that
c5a(8') = a(8')-a(8) at location 8' along the crack front in this arrangement. Therefore,
eqn (4) becomes

(10)

where a = a(8) should be kept in mind. Equation (10) plus eqn (6) then gives the total
relative displacement for a nearly circular crack

Auj (r, 8) = AuJ[r,8;a]+c5[Auk,8)]

(l-v2
) 12~ {fa 3= 2 E I AaK2[8'; a']kaj(O'; r, 0; a')a' da'

o r a= I

+Ctl AaK2[O' ; a]ka/8' ; r, 8; a») [a(8') - a]}a dO'

(1- v2
) fa(l/') i2~ (3 )

~ 2-
E
- I AaK2[0';a']kaj(8';r,8;a') a' dO' da'

r 0 a= 1
(11)

where the ~ sign means equal to first-order accuracy. Everything here is again exact to first­
order accuracy in a(8')-a. Equation (11) plus eqn (7) then enables us to calculate the
relative crack surface displacement for a nearly circular crack when the loading profile
p;(p, ¢) and the actual shape function 0(8) are known.

CRACK FACE WEIGHT FUNCTIONS

From the above discussion, we know that knowledge of the crack face weight function
kaj for a perfectly circular reference crack is necessary for the calculation of the relative
crack surface displacement for a nearly circular crack. Fortunately, those functions kaj were
derived by Bueckner (1987). We present them here in our coordinate system and notations

k {d2 dO}k 2r(8' ;r, O;a) = - -2- v- +2- cos A+ -[v-2-2v cos 2A]
-v ar r r

k 3r(tJ';r, 8; a) = 22k {~sin A-V~ sin 2A}
-v r r

k 20(8';r,8;a) = _2
2k {(1-V)~SinA+v~sin2A}
-v r r

k {d2 dO}k 30(tJ'; r, 8; a) = -- v- -2(I-v)- cos A+ - [2-v-2v cos 2),]
2-v ar r r

(12)
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Fig. I. A perfectly circular crack on y = 0 in an infinite elastic body; f)' denotes the location along
the crack front.
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where d 2 = a2+r2 -2ar cos (0' -0) is the square of the distance between the point r, 0 and
the point a, 0' along the crack front, and A. is an angle shown in Fig. 1, which has the same
sign as 0-0' with 10-0'1 < n. We also have the following supplementary geometrical
relations referring to Fig. I

cos A. = [a-r cos (O'-O)]jd; sin A. = -r sin (0' -O)jd

cos 2A. = l-2r2 sin2 (O'-0)jd 2
; sin 2A. = 2[a-r cos (O'-O)]r sin (0' -O)jd 2

•
(13)

Equations (12) and (13) provide a full definition of the crack face weight functions for an
internal circular crack. These equations are mathematically well defined everywhere except
at r = °where eqns (12) are not directly evaluable. Nevertheless one can show, by taking
the limit r -+ °in eqns (12) and (13), that

k1y(O';0,O;a) = k = lj(an)3/2,
2k(1 +v) ,

k 2r (O' ; 0, 0; a) = 2 cos (0 - 0)
-v

2k(1-2v) . ,2k(1+v). ,
k 3r(0';0,O;a)=- 2 sm(O'-O), k 29 (O;0,O;a)= 2 sm(O-O) (14)

-v -v

'. . 2k(1-2v) ,
k 3iJ (O ,0,lJ,a) = 2-v cos (0 -0),

Kassir and Sih (1975) presented solutions for intensity factors due to a point force pair
in the radial direction, i.e. k 2r and k 3r • Their solutions are not in agreement with the
corresponding solutions in eqns (12). Therefore, it is necessary to check the validity ofeqns
(12) and (13). One may observe that in the limit a -+ 00, the circular crack becomes a half~

plane crack. Therefore, eqns (12), in the same limit, should approach the corresponding
solutions for crack face weight functions for a half-plane crack. Assuming in that limit the
crack front lies along the z-axis and x < °denotes the crack face, the polar coordinates r,O
in the crack plane are replaced by Cartesian coordinates x, z in the following manner:

SAS 24:2-£

r-a-+x; aO-+ -z. (15)
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Using the following asymptotic relations when a -+ 00

a - r = - x ; d sin A= z' - z ; d cos A = - X

d 2 sin 2Ao = - 2x(z' - z); d 2 cos 2Ao = x 2- (z' - Z)2
(16)

where now d 2= x 2+ (z' - Z)2 is the square of the distance between a point x, z on the crack
face and a point 0, z' along the crack front. It can be shown that eqns (12) are reduced to

[
2v X

2_(Z'-Z)2]
k 38 = k 3z = 1- -2- 2 (' ) 2 k-v x + z -z

4v x(z' -z)
- k 28 = k 2z = - -2- 2 (' ) 2 k

-v x + z-z

4v x(z' -z)
- k 3r = k 3x = - -2- 2 (' ) 2 k.-v x + z -z

(17)

Equations (17) match the correct point force intensity factor formulae for a half-plane
crack (see, e.g. Tada et al. (1973)). Although the solutions proposed by Kassir and Sih
(1975) do give the correct solutions when r = 0, they failed to match the above correct
formulae for a h,alf-plane crack in the limit that the radius of the crack a approaches to
infinity. In factlheir solutions suggest that k 3r -+ °and k 2r -+ 00 when a -+ 00.

SHEAR STRESS INTENSITY FACTORS

Let us consider a slightly non-circular crack the shape of which is described by the
function a(8) which differs modestly from a constant. As indicated by formulae (2), very
near the crack front the stress intensity factors are asymptotically proportional to the crack
face relative displacement. Under the present coordinate system that relation becomes

(18)

8(1 +v) J(a-r)f!.u,(r,8) = E 2n K 3(8)+O[(a-r)3/2]

where nand t now are the normal and tangential directions along the slightly non-circular
crack front with n lying in the r, 8 plane (Fig. 2). The same relation would also hold between
the variation of these quantities from the reference state in which the crack front is perfectly
circular. Note that quantities f!.un(r, 8) and f!.u,(r, 8) should be associated with the current
directions nand t during the perturbation of the crack front.

Let us introduce the following asymptotic near tip expansion for the relative dis­
placement variation for conciseness
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Fig. 2. Near circular crack in an infinite elastic body. Reference circular crack front r = a(9) centered
on (0,0); 9' denotes the location along the actual front and oa(9') = a(9')-a(9) denotes the
advance of the crack front location in the plane y = 0; normal (n) and tangential (t) directions at

location 9 along the actual crack front.

<5[L\u,(r, 0)] = 8(1~ v
2

) J(a~r)<5P(O)+O[(a _ r)3 /2]

<5[L\ue(r, 0)] = 8(1; v) J(a2~r)t5Q(0)+O[(a-r)3/2]

where

<5P(O) = ?EJ f"J(8(a~r») ttl AaK2[0'; a]ka,(O'; r, 0; a)} [a(O')-a]a dO'

<5Q(O) = ~iEJ f" (I-v) J(8(a~r») ttl AaK2[0'; a]kae(O'; r, 0; a)} [a(O')-a]a dO'.
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(19)

(20)

Since k I, = k Ie = 0 the summation over (J( in the above equations is actually from 2 to 3. It
will be shown that eqns (20), together with eqns (12), can be finally reduced to

1 f2" {2 cos (0' -0)-3v
<5P(O) = 2na(2 _ v) PV Jo 4 sin2 [(0' _ 0)/2] K~[O' ; a]

(
0'-0) 0 I.]} fjl 1 V 0 fj/. da(O)

-cot -2- K 3[0 ,a [a(u )-a] dO + (2-v)(l-v) K 3[u ,a] a dO

1 f2" {2(1-V) cos (0 ' -0)+3v 0 I.

<5Q(O) = 2na(2-v) PV Jo 4 sin2 [(0' -0)/2] K 3[0, a]

(
0'-0) 0 1 } 1 v(1-v) 0 1 da(O)

+(I-v) cot -2- K 2[0 ;a] [a(O')-a] dO + (2-v) K 2[0 ;a] a dO

(21)

to first order in a(O') - a and in da(O)/dO, where PV in eqns (21) denotes the principal value
in the Cauchy sense. When substituting these equations into eqns (19) we get the changes
in relative surface displacement at a point r, 0 very near the crack front in going from the
hypothetical reference state, in which the crack front is perfectly circular and of radius
a = a(O), to the actual state in which the crack front differs modestly from a circle.
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Equations (21) can be proved as follows. Breaking the integrals nn in eqns (20) into
J~-q + J:~: + Ji:q, the J~-q + Ji:qparts, when letting r ..... a (remember a a(O» and then
11 ..... 0+, gives the PV term in eqns (21) above, whereas the remaining J:~: part of bP(O)
becomes after taking the variable transformation 0' - e= t

1 . fq K~[t+O;a] {d
2

d a }
- 2 (2 ) h~ d 2 v- +2- cos A+ -[v-2-2v cos 2A.] [a(O')-a] dO'

n - v r_a _q ar r r

1 r fq K~[t+(J;a] {d . 1 a. '}[' (J'
+ n(2-v)(l-v) r:~ _.~ d2 -;: sm A-V r sm 2A a«(J )-a] d (22)

where d 2 = a2+r2- 2ar cos t and from eqns (13)

cos A = (a-r cos t)ld; sin A = -r sin tid

cos 2A = 1-2r2 sin2 tld2; sin 2A = -2(a-r cos t)r sin tld2.

Now let us observe that

(23)

da«(J)
K~[t+(J;a][a(t+8)-a] = K~[(J;a]det+0[t2]; (a = a(8» (24)

and that the error term 0[t2] will have a bound of form 10[t2]1 ~ Bt2 on -11 ~ t ~ I'f for
some finite B > O. The term linear in t gives a zero contribution to the first integral in eqn
(22), i.e. to the integral involving K~ because the rest ofthe integrand forms an even function
of t by eqns (23). It can also be justified that when r ..... a-

Ivd 2/(ar)+2(dlr) cos A+(alr) [v-2-2v cos 2A]1 ~ C

for some finite C ~ 0 and that d 2 = (a-r)2+4ar sin2 [tI2] ~ 4ar sin2 [tI2],.., art 2 when
-11 ~ t ~ I'f for smalll'f. We thus have

I
1 . fqKg

[t+8;a]{d
2

d a } I2 (2 ) h~ d2 v- +2- cos A+ -[v-2-2v cos 2A] [a(8')-a] dO'
n - v r-a _~ ar r r

BC fq t 2 BCI1
~ . dt,.., . 25

2an(2-v) _~4 sm2 [tI2] an(2-v) ( )

Hence the upper bound on the first integral, and therefore the integral itself vanishes when
letting I'f -+ O. It could be further shown by using eqns (23) that in the same limits, the
second integral in eqn (22), involving Kt becomes with the substitution at = (a- r)p

(26)

Equation (21)2 can be similarly derived following the same steps.
In the above argument we have implicitly assumed, in writing the error terms as 0[t2],

that K2[e' ;a] [a(9') - a] has a good second derivative at e. However, the steps leading to
eqns (21) above may still be justified under the weaker assumption that the first derivative
of K~[8';a] [a(9')-a] exists and is merely Holder continuous at 8, such that the bounded
term above may be written as Bltl iH where 0 < e~ 1.

The variation of surface displacements contains two contributions. The PV term from
f~-q+J;:q (11 ..... 0+), which represents the influence of the rest of the non-circular crack
front on the relative displacement near the special point a, e along the actual crack
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front, conveniently named as the "global effect", and the term from J:~~ which represents
the contributions due to local slope change in the perturbation process, or the "local effect"
for shortness. Similar comments were made in an earlier work (Gao and Rice, 1986) on the
shear stress intensity factor for a slightly non-straight half-plane crack. Comparing with
the solutions for a half-plane crack we observe that the coupling terms between mode 2 and
mode 3 fracturing are now found in both the global effect and the local effect while in the
case of a half-plane crack they only exist in the local effect. In fact it can be seen that when
a ~ 00 the coupling term in PVintegrals vanishes, but the coupling terms in the local effect
remain. In fact, if we rewrite aB as arc length position s along the reference front, the local
effects of fJP(B) and fJQ(B) are

vKHs; a(s)]/[(2 - v) (1- v)] [da(s)/ds] and v(l- v)Kns; a(s)]/(2 - v) [da(s)/ds] (27)

respectively. They have exactly the same form as those for a half-plane crack (Gao and
Rice, 1986). This is not unexpected because the limiting process in calculating the local
effect is equivalent to stretching the small differential segment of the crack front containing
point s infinitely to a half-plane crack. More intuitively it can be imagined that in the very
near neighborhood of some special point s along the circular crack front, one would not
be able to tell whether the whole crack front is a straight line or a circle of some finite radius.
The above argument remains valid even for an arbitrary, smoothly curved crack. For this
reason, expressions (27) will be generally valid for the local slope effect on the variation of
relative crack surface displacements when any smoothly curved crack front gets perturbed
with a slope change da(s)/ds at location s along the crack front.

Referring to Fig. 2, we can get the relative displacement components in the normal
and tangential directions along the crack front in terms of tiur(r, B) and tiue(r, B)

tiun(r, B) = tiur(r, B) cos IX - tiue(r, B) sin IX

tiu,(r, B) = tiur(r, B) sin IX + tiue(r, B) cos IX
(28)

where IX is the angle between the normal n- and r-axis. In fact tan IX = da(B)/(a dB). There­
fore, as IX is small for a small perturbation, we have to first order

da(B)
tiun(r, B) = tiur - tiue a dB

da(B)
tiu,(r, B) = tiue +tiur~ .

(29)

We now write tiur(B) as tiu~[B;a] + fJ [tiur(B)] and tiue(B) as tiu3[B; a] +fJ[tiue(B)], i.e.
the sum of near-tip relative crack surface displacements in the reference circular crack front
configuration and the variations ofrelative crack surface displacement due to the crack front
being perturbed from a circle, i.e. due to the crack front advancing by fJa(B') = a(B') - a. We
then have

o 0 da(B)
tiun(r, B) = tiur [B; a] +fJ[tiur(B)] - tiue [B; a] a dB

o 0 da(B)
tiuk, B) = tiuo [B; a] +fJ[tiuo(B)] +tiur [B; a] a dO .

(30)

Everything here is exact to first-order accuracy in the deviation of the actual crack front
from a circle of radius a = a(B). Comparing these expressions, as evaluated with the help
of eqns (19) and (21), to eqns (18) we obtain the stress intensity factors K 2 and K 3 to first
order when the crack front deviates from a reference circular front. The results, sup­
plemented for completeness with the result for the mode I stress intensity factor derived by
Gao and Rice (1987), are as follows:
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K (0) = KO[O' (0»)+ ~ PV f2lt KnO'; a(O»)[a(O')/a(O)-I) dO'I l,a 8n Jo sin2[(0' -0)/2]

2 o. 1 da(O) 1
K2(0) = K~[O; a(O») 2_ vK 3[0, a(O») a(O) <i"8 + 2n(2- v)

(2" { 2 cos (0' -0)- 3v (0' -O)}
xPV

Jo
Kg[O';a(O)] 4 sin2 [(0'-0)/2] -K~[O';a(O»)cot -2-

x [a(O')/a(O)-I) dO'

_ o. 2(I-v) o. 1 da(O) 1
K 3(0) - K 3[0,a(0)]+ 2-v K 2 [0,a(0)]a(0) <i"8 + 2n(2-v)

PV (2" {KO[O'. (0»)2(I-v) cos (0'-0)+3v
x Jo 3,a 4 sin2 [(0'-0)/2]

+ (I-v) cot (0' ;O)Kg[O'; a(o)]} [a(O')/a(O) -1) dO'.

(31)

It can be easily shown that eqns (31), in the limit when a .... 00, reduce to the corresponding
first-order shear stress intensity factor formulae for a half-plane crack derived by Gao and
Rice (1986).

AXISYMMETRIC LOADS; HARMONIC WAVE FORM PERTURBATIONS

Now consider, for example, the case when the crack system is subjected to axisymmetric
loading which consists of some distribution of radial and/or tangential forces so that the
stress intensity factors thus induced by a given load system are independent of the location
along the circular crack front, i.e. K:[O; a] = K:[a)(iX = 1,2,3). Therefore, eqns (31) become

3

Ka(O) = K:[a(O») + L CapK3[a(O)]
P=I

for iX, fJ = 1, 2, 3, where coefficients CaP have been introduced as

I (2" 1
C il = 2n PV Jo 4 sin2 [(0' -0)/2] [a(O')/a(O)-I) dO'

1 (2" 2 cos (0' -0)-3v, ,
C22 = 2n(2 _ v) PV Jo 4 sin2 [(0' _ 0)/2] [a(O )/a(O)-I] dO

1 {2 da(O) I f2lt, , '}
C23 = - 2-v a(O) <i"8 + 2n PV Jo cot [(0 -0)/2)[a(0 )/a(O)-I] dO

I f2" 2(l-v) cos (O'-0)+3v, ,
C 33 = 2n(2- v) PV Jo 4 s1n2 [(0' _ 0)/2] [a(O )/a(O) - 1] dO

C 32 = - (1- v) C 23; CaP = 0, otherwise.

(32)

(33)

Note that CaP (iX, fJ = 1,2,3) forms a 3 x 3 matrix, which when multiplied by the intensity
factors for a reference circular crack under a given load system gives the variation of stress
intensity factors due to the perturbation a(O')-a(O). Let CaP be called the "perturbation
matrix", which has the same order of magnitude as a(O')-a(O) and da(O)/dO. The results
of eqn (32) for Ka(O) can be used to compute the energy release rate G(O) along the slightly
non-circular front by the relation



Nearly circular shear mode cracks

G = (I-V2)(Ki+KDjE+(I+v)K~jE
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(34)

where E is Young's modulus and v Poisson's ratio. When the calculation is done and we
retain only those terms consistent with first-order accuracy in max la(8')-a(8)1 and

O<0'<2n

da(8)jd8, we find with the help of eqns (33) that the coupling terms involving KgK~ cancel
one another so that

(I v2
)

G(8) = G O[a(8)] + 2-£- {C II (KUa(8)]) 2 + C22 (Kg[a(8)])2 + C33 (K3[a(8)])2j(l- v)}.

(35)

This phenomenon was also observed in an earlier paper (Gao and Rice, 1986).
Specifically, let us consider a crack with the harmonic wave form perturbation

(36)

where ao is a real constant, n is an integer whic.h represents the number of waves on the
circumference of the circle r = ao, A is a constant (possibly complex) and IAlJao « 1. The
notations Re [c] and 1m [c] will be used to denote the real and imaginary parts of some
arbitrary complex number c. We can also define the wavelength L of the perturbation
profile so that L = 2nao/n. Substituting eqn (36) into eqns (33), and discarding terms of
higher than first-order small terms, we have

n ·0 2n+ I inO • •C = -- Re [A e,n]. C23 = (2 ) 1m [A e ], C 32 = -(l-V)C23 ,
II 2ao ' -vao

(2-3v)n-2 . _ (2+v)n-2(l-v) [ inO]

Cn = - 2(2-v)ao Re [A e
lnO

]; C 33 - - 2(2-v)ao Re A e ,

Therefore, eqn (32) becomes

2n+1 ° inO.
- (2 ) K 3[aO] 1m [A e ],

-vao

° (dKnao] (2+v)n-2(l-v) 0) ·0
K3(8) = K 3[ao]+ dao - (2-v) 2ao K 3[ao] Re [A e,n ]

(2n+I)(I-v) ° ·0+ (2) K 2 [ao] 1m [A e1n
];-vao

and eqn (35) becomes

Here

(37)

(38)

(39)
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[
2+V 2(1-v) LJ 0 2 }

+ (2-v) - (2-v) 2nao (K 3[aoD j(1-v) . (40)

Note that the extrema of G(e) do coincide with the extrema of aCe), i.e. where A einO = IAI
since the coupling terms which contain terms of 1m [A einO

] in eqn (40) have canceled one
another.

We have not been able to find an energetic interpretation for Fin eqn (38). The energy
release rate G is sometimes called the "crack extension force" since it is the generalized
force conjugate to crack growth. We assume that the quasi-static growth rate of the
crack increases with this G at the same location along the front. Then a small harmonic
perturbation of wave number n can be said to be configurationally stable during subcritical
crack growth if the energetical force G(e) is decreased from GO[e; ao] when aCe) exceeds ao
and increased when aCe) is less than ao and configurationally unstable if the opposite is
true. Although the stability issue is less readily addressed under general mixed mode loadings
as we have analyzed them here since a mixed mode crack will seldom grow along a plane,
one case which may meet that condition of planarity involves the tectonic shear crack
the slip surface of which is channeled by a pre-existing fault plane. In that case or other
appropriate cases, we have the following stability condition:

(41)

This reduces to the formulae given by Gao and Rice (1987) for pure mode I conditions.
The crack growth is then likely to amplify the forms of those unstable wave configurations,
i.e. those which do not satisfy inequality (41). Of course, the growth or decay of the
harmonic perturbations is understood to be superposed on the overall increment of ao in
describing the total crack growth. Now consider some axisymmetrically distributed loading
pir) (j = x,y, z) on the crack faces. The following preliminary relations may be shown:

1
2n 12n 2 p

k 3r(B';p,¢;a) d¢ = k 20(B';p,¢;a) d¢ = -----;-3 / 2 2
o 0 ,,(na ) ,,(a - p )

r2n enJo k 30 (B'; p, ¢; a) d¢ = Jo k 2r (B'; p, ¢; a) d¢ = O.

Therefore, carrying out the integration on ¢ in eqn (6) results in

(42)

(43)

The tangential loading Po is more interesting as one would meet such loading in a simple
torsion test. As an illustration, let us assume that the only non-zero stress components
induced on a plane y = const by the external loading is of form <yO = - Cpm for some
constant C and m in the absence of the crack (or far away from the crack). Therefore, by
the well-known superposition argument we can equivalently consider that the crack system
is subjected to some tangential loading Po(p) = Cpm on the crack faces. By eqns (43), we
have
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Kg[a] = 0

2C fa pm+ 2 2CamJ a fn/2
K~[a] = /3" J 2 dp = J sinm

+ 2 t dt.
y(na) 0 (a_ p2) n 0

Equations (44) can then be written as
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(44)

(45)

for some constant B. Note that when m = 1eqns (45) are compatible with the corresponding
result in Tada et al. (1973). Therefore

o l+v 0 2 0 0
G raG] = E(K 3 [a oD ; dG jdao = (2m+l)G jao;

2+v [ 2(I-V)] 0
Flao] = 2-v 1- (2+v)n G [ao].

Substituting eqns (46) into inequality (41) we have the stability condition

2-v 2(1-v)
n > -2-(2m+l) + -2--

+v +v

when v = 0.25, inequality (47) reduces to

n> (14m+ 13)j9.

(46)

(47)

(48)

In a simple torsion test where a constant torque is applied to a linear elastic specimen, the
shear stress in the absence of a crack is linearly increasing with r, therefore corresponds to
the m = 1 case discussed above. Hence by inequality (48) the stability condition is n > 3 so
that modes n = 1,2 are unstable and mode n = 3 is neutrally stable. This suggests a strong
irregularity in the growth of a circular crack under torsion test.

EQUILIBRIUM CRACK SHAPE UNDER UNIFORM FAR FIELD SHEAR LOADING

In the last section we studied how the stress intensity factors change when the crack
front is perturbed from the reference circle for a crack system under axisymmetricalloading.
It would be equally interesting to consider such a crack subjected to some complicated
loading system that induces some varying Kg and K~ along the reference crack front. In
that case it is hard to address the configurational stability problem of the planar crack since
the intensity factors are not even uniform along the reference crack front. However, we
could address the following: since in perturbing the crack front from a reference circle to
another shape the distribution of stress intensity factors varies correspondingly, is it possible
by slightly perturbing the crack front from its reference state to an "equilibrium" shape
such that the energy release rate G, or some other characteristic quantities, distributes
uniformly along the perturbed crack front? Because ofits conjugation with the crack growth
~a, the energy release rate, sometimes called the crack extension force, is reasonably assumed
to be a critical quantity which controls the crack growth. Therefore, we call some perturbed
shape corresponding to G distributed uniformly along the crack front an "equilibrium"
shape. Of course some other critical quantities can also be used here if the growth of a
crack is associated with that quantity. For example the maximum shear stress intensity
factor S = J (K~ +KD can be considered in a similar way and it will lead to a slightly
different equilibrium shape. In the following we will find a way to calculate the proper wave
form perturbations of a circular crack that lead to the equilibrium shape.



190 H. GAO

The equilibrium shape of a planar crack under some mixed mode loading system is
assumed here to be close to a circle in consistency with the first-order accurate perturbation
analysis. This is not generally true, but we only consider the relevant cases. Such an equi­
librium shape can be studied in the following manner: assume some function a«(}), which is
dependent on the polar angle (} and is close to a constant, can be used to describe the
equilibrium shape of the crack. We expand that shape function into a Fourier series and
consider all terms other than the zeroth-order constant term as harmonic wave form per­
turbations. Therefore

n

a«(}) = L Ck e ikO

k= -n

(49)

where Ck (k ¥ 0) are some unknown complex constants to be determined and the series has
been truncated to a finite series for approximation. The contributions to the energy release
rate due to these perturbation terms can then be calculated from eqns (31) and then eqn (34)
to first order in Ck (k =f. 0) so that

n

G«(}) = L 9k e ikO

k=-n

(50)

where 9k is some complex constant coefficient that depends on Cj , i = - n, ... ,n. Letting
9k = 0 for k = - n, ... ,n and k =f. 0, we then get 2n equations to solve for 2n unknown
constants Ck in terms of Co. Of course we can let Co = 1 at the beginning of the calculation
in calculating the equilibrium shape. The actual magnitude of Co will be determined by the
given load system.

As an example let us now consider the case when the crack system is subjected to a far
field uniformly distributed shear loading r in the (} = 0° direction. The stress intensity factors
for a circular crack under such shear loads was given by Tada et al. (1973) as

Kg = rx-j(na) cos (}; K~ = -(1-v)aJ(na) sin (} (51 )

where a = 4rj[n(2 - v)]. As a first step let us consider an arbitrary harmonic wave form
perturbation described by eqn (36) and substitute eqns (51) and (36) into eqns (31). Carrying
out the principal value integrations we finally find that

o. K~[(} ; ao] iO
K 2«(}) = K 2[(},ao]+ (1 ) 1m [A e ]

-vao

K
3
«(}) = KH(}; ao] _ Kg[(}; ao] (1- v) 1m [A eiO]

ao

forn= 1, and

[
4 v ] K~[(}; ao] inO

+ 2_v n + (l-v)(2-v) 2ao 1m [A e ]

o [2+V 2 ] KH(};ao] inOK 3«(}) = K 3[(};ao]- -2-n - -2- 2 Re [A e ]
-v -v ao

_ [4(l-V) n _ v(l- V)] Kg[(}; ao] 1m [A einO]

2-v 2-v 2ao

(52)

(53)
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for n > 1. Using the existing analytical solutions, eqns (52) and (53) are verified for the cases
of n = 1,2 in the Appendix. Using eqns (34), (52), and (53) to calculate the energy release
rate G, we have

(54)

where now

(55)

For most material v = 0.25 ~ 0.30. Therefore, G 0[0; ao] differs from a constant term only by
a modest cos 20 dependent term. Therefore, one would conveniently expand the shape
function into a cosine Fourier series as

a(O) = ao[1+nJ~.... An cos nOJ.
Using eqns (54) and (56), we find that in this case

E G(O)
-1-2 -2-- = 90+92 cos 20+94 cos 40+ ...
-v C( 1Wo

where

V 2-2v-v2 3v
90 = l-v/2+ 4A2; 92 = v/2- 2-v A 2+ 4"A4;

3v 2(3-3v+v2
)

94 = 4"A 2- 2-v A 4 •

(56)

(57)

(58)

Letting the coefficient of cos nO vanish for n = 2,4 after truncation of the above series, we
see that A 2is of order v while A 4 is of order v2

• Hence we drop the A 4 term to be consistent
with the first-order analysis. Therefore, A 2 = v(2-v)/[2(2-2v-v2

)] = 0.1522 for v = 0.25.
Hence the equilibrium shape of the crack with a uniform distribution of the crack extension
force G is approximately

a(O) = ao(l + 0.1522 cos 20+ .00). (59)

This is very close to an ellipse. The above a(O) is plotted in Fig. 3.
Consider now that the crack growth criteria are such that the crack grows only when

the maximum shear stress intensity defined by S(fJ) = [K2(OW+ [KlOW attains a critical
value. Again, it is analogous to see that
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Fig. 3. The "equilibrium shape" of a planar crack under remotely uniform shear loading; cor­
responds to the uniform distribution of the crack extension force.

SO[O; ao] = (Kg[o; ao])2 + (KUO; a0]) 2

= a21tao[1-v(2-v)/2+(v/2)(2-v) cos 20].
(60)

Following the same steps leading to eqn (59), we have the equilibrium shape function, again
for v = 0.25 as

a(O) = ao(l +0.2913 cos 20+ ...)

which is about twice as big as the amplitude of the previous perturbation.

(61)
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APPENDIX: PERTURBATION FORMULAE VERSUS ANALYTICAL SOLUTIONS

In the text we derived perturbation formulae of eqns (52) and (53) for the harmonic wave form perturbation
a(9) = ao+ Re [A ein9

]. One may note that the above perturbation corresponds to a small translational shift of the
circular crack for n = I and corresponds to slightly squeezing the circular shape of the unperturbed crack into an
ellipse for n = 2. For both cases we know the exact solutions for the perturbed crack. Therefore, for the sake of
confidence in eqns (52) and (53) we check them against the correct first-order behavior of analytical solutions in the
two special cases, i.e. n = I, 2.

We consider perturbations in the form of a(9) = ao+A cos n9 for A> 0 without loss of generality. In the
first case, n = I, eqns (51) still apply to the perturbed crack if replacing 9 by a new polar angle Passociated with
the perturbed center. We also have the geometrical relations

It is then ready to show that

A +ao cos P= a(9) cos 9; ao sin p = a(9) sin 9. (AI)

(A2)

(A3)

Hence eqns (52) match the correct analytical first-order formulae in eqns (A2).
For the n = 2 case, let us write the corresponding analytical solutions for an elliptical shear crack by Kassir

and Sih (1966)

t.j(nb)k2k'
K 2 = . cos ¢

B{sm2 ¢+(b/a)2 cos2 ¢}1/4

tJ(nb)(l-vW .
K 3 = - B{sin2 ¢+(b/a)2 cos2 ¢}1/4 sm ¢

where a, b are the semi-major and minor axis of the ellipse and ¢ is the parametric angle describing the ellipse as

x = a cos ¢; z = b sin ¢

(crack lies on the plane y = 0) and

k' = b/a; k 2 = l-k'2

B = W-v)E(k) +Vk'2K(k)

1
"/2 1"/2 d¢

E(k) = .j(I_k2 sin2 ¢) d¢; K(k) = .j 2' 2 .
o 0 (l-k sm ¢)

(A4)

(A5)

Note that ¢ is not the real geometric polar angle of point (x, z) at the crack front, i.e. tan ¢ i' z/x. This correction
is needed both in drawings of Kassir and Sih (1966) and Tada et al. (1973).

It can be shown, to first-order accuracy in A/ao that in this case

2 4 ( 4+v )
a/ao=I+A/ao; b/ao=I-A/ao; k/B=n(2_v) 1+2(2_v)A/ao

so that

(A6)

Substituting n = 2 into eqns (53), one may easily derive eqns (A6). Hence in both cases ofn = 1,2 the perturbation
formulae match the analytical solutions.


